ElectroenChepalogGraft (EEG)

Assalamualaikum..
kali ini kita akan membahas tentang EEG dimana alat ini berfungsi sebagai pembaca aliran listrik pada syaraf otak, inie termasuk dalam tugas ke dua saya dalam menuntut ilmu elektronika biomedik 3 SKS. ya hitung-hitung bisa berbagi ilmu... hihihiiiii :) nah buat para pengunjung  silahkan dah untuk membacanya terlebih dahulu dan Semoga bermanfaat..


A.      SEJARAH  EEG
Pada tahun 1929, seorang psikiater Jerman yang bernama Hans Berger, yang  bekerja di kota Jena, mengumumkan bahwa, mungkin untuk merekam arus  listrik yang lemah yang dihasilkan pada otak, tanpa membuka tengkorak, dan untuk  melukiskannya ke suatu kertas. Berger menamakan format perekaman yang baru ini  sebagai Electroencephalogram (EEG).
Terkesan dengan berbagai kemungkinan untuk membangun peta  bidimensional menyangkut aktivitas EEG di atas permukaan otak, W. Gray Walter  menemukan toposcope pada tahun 1957.
Toposcope ini adalah suatu alat yang kompleks. Toposcope itu mempunyai 22  tabung sinar katoda (yang serupa dengan tabung TV), masing-masing di antara  tabung sinar katoda itu dihubungkan ke sepasang elektroda yang dipasang ke  tengkorak.. Elektroda diatur di dalam suatu susunan geometri, sehingga masing- masing tabung bisa melukiskan intensitas dari  beberapa irama yang menyusun EEG  di dalam area otak tertentu. Susunan tabung CRT ini, sedemikian rupa sehingga  display phosphorescent spiral menunjukkan secara serempak irama yang  menunjukkan bagian tertentu dari otak.

1.        Otak Menghasilkan Listrik
Penempatan elektroda di kulit kepala mengikuti sistem yang sudah ditentukan  yaitu sistem 10-20, dengan melihat kode huruf yang menyatakan lokasi dan angka  ganjil menunjukan sisi kiri serta angka genap menunjukan sisi kanan. Penempatan  1elektroda yang tepat dan baik merupakan syarat utama untuk mendapatkan hasil  rekaman EEG yang baik dan dapat dipercaya. Disamping itu kebersihan kulit kepala,  kondisi elektroda, mesin EEG dan kepatuhan anak saat perekaman juga sangat  berpengaruh untuk mendapatkan hasil yang baik. Hans Berger menyatakan bahwa otak  manusia mempunyai aktivitas listrik yang kontinyu dan hal ini bisa direkam.
Alat  perekam EEG ini biasanya memerlukan elektroda (lempengan besi kecil) yang  dilekatkan ke permukaan kulit kepala dengan menggunakan gel yang menghantarkan aliran listrik. Amplifier yang cukup kuat digunakan untuk meningkatkan amplitudo hingga beratus-ratus bahkan beribu-ribu kali dari sinyal yang lemah (sinyalnya beberapa mikrovolt). Suatu alat yang disebut Galvanometer yang mempunyai tinta pena yang ujungnya bertugas untuk menulis pada kertas khusus yang bergerak kontinyu dengan kecepatan tetap yang telah diatur sebelumnya, Hasilnya berupa gelombang. Satu  pasang dari elektroda biasanya membentuk satu channel dimana alat perekam EEG  sangat bergantung pada hal ini dan EEG dapat membentuk 8 – 40 channel yang terekam secara paralel. Ini disebut alat perekam EEG multichannel. Sejak dari penemuan alat ini, dapat diketahui bahwa karakteristik dari aktivitas EEG ini dapat berubah-ubah di berbagai situasi, utamanya pada saat sadar, istirahat, tidur, dan mimpi, dimana terjadi perubahan gelombang otak baik frekuensi maupun amplitudonya dan gelombang-gelombang itu diberi nama seperti alfa, beta, theta, dan delta. Utamanya sifat seseorang juga dapat mengubah pola gelombang di bagian-bagian yang berbeda dari otak. EEG juga digunakan di bidang neurologi dan psikiatri, utamanya untuk mendiagnosa penyakit otak, seperti epilepsi (gangguan serius yang disebabkan oleh adanya aktivitas yang terganggu di neuron), gangguan tidur, dan tumor otak.

1.        Sinyal Electroencephalogram (EEG)
Sinyal EEG dapat diketahui dengan menggunakan elektroda yang dilekatkan  pada kepala. Tegangan sinyalnya berkisar 2 sampai 200 μV, tetapi umumnya 50 μV. Frekuensinya bervariasi tergantung pada tingkah laku. Daerah frekuensi EEG yang  normal rata-rata dari 0,1 Hz hingga 100 Hz, tetapi biasanya antara 0,5 Hz hingga 70  Hz. Variasi dari sinyal EEG yang terkait dengan frekuensi dan amplitudo  mempengaruhi diagnostik. Daerah frekuensi EEG dapat diklasifikasikan menjadi lima bagian untuk analisis EEG, yaitu :
Delta (δ)    = (0,5 – 4) Hz
Theta ( θ)  = (4 – 8) Hz
Alpha (α)   = (8 – 13) Hz
Beta (β)     = (13 – 22) Hz
Gamma (γ) = (22 – 30) Hz


A.      PENGERTIAN EEG
Elektroenchelpalograph/Elektro Enselo Grafi (EEG) adalah suatu alat yang mempelajari gambar dari rekaman aktifitas listrik di otak, termasuk teknik perekaman EEG dan interpretasinya. Neuron-neuron di korteks otak mengeluarkan gelombang-gelombang listrik dengan voltase yang sangat kecil (mV), yang kemudian dialirkan ke mesin EEG untuk diamplifikasi sehingga terekamlah elektroenselogram yang ukurannya cukup untuk dapat ditangkap oleh mata pembaca EEG sebagai gelombang alfa, beta, theta dan sebagainya.



Gambar 1. Pemeriksaan Elektroenchepalograph (EEG)

Transformasi sinyal EEG menjadi suatu model, merupakan suatu cara yang sangat efektif dalam membantu klasifikasi sinyal EEG, mengidentifikasi serta mengestimasi spektrum sinyal EEG. Sinyal EEG mengandung komponen-komponen tertentu, yang dikenal sebagai gelombang alfa (8-13 Hz), beta (14-30 Hz), teta (4-7 Hz), dan delta (0.5-3 Hz), sehingga transformasi sinyal EEG menjadi daerah-daerah frekuensi merupakan hal yang sangat berguna, terutama dalam identifikasi gelombang-gelombang di otak.
- Alfa 8 – 13 Hz Relaks, mata tertutup
- Beta > 14 Hz Aktifitas/ berfikir
- Teta 4 – 7 Hz Tidur ringan/ stres emosional
- Delta 0,5 – 3 Hz Tidur nyenyak
Berikut ini adalah penjelasan singkat mengenai karakteristik empat jenis gelombang otak yang umumnya muncul pada setiap orang :
Gelombang Beta: Waspada, Konsentrasi. Kondisi gelombang otak Beta (13-30 Hz) menjaga pikiran kita tetap tajam dan terfokus. Dalam kondisi Beta, otak Anda akan mudah melakukan analisis dan penyusunan informasi, membuat koneksi, dan menghasilkan solusi-solusi serta ide-ide baru. Beta sangat bermanfaat untuk produktivitas kerja, belajar untuk ujian, persiapan presentasi, atau aktivitas lain yang membutuhkan konsentrasi dan kewaspadaan tinggi.
Gelombang Alpha: Kreativitas, Relaksasi, Visualisasi Gelombang otak Alpha (8-13 Hz) sangat kontras dibandingkan dengan kondisi Beta. Kondisi relaks mendorong aliran energi kreativitas dan perasaan segar, sehat. Kondisi gelombang otak Alpha ideal untuk perenungan, memecahkan masalah, dan visualisasi, bertindak sebagai gerbang kreativitas kita.
Gelombang Theta: Relaksasi mendalam, Meditasi, Peningkatan Memori Lebih lambat dari Beta, kondisi gelombang otak Theta (4-8 Hz) muncul saat kita bermimpi pada tidur ringan. Atau juga sering dinamakan sebagai mengalami mimpi secara sadar. Frekuensi Theta ini dihubungkan dengan pelepasan stress dan pengingatan kembali memori yang telah lama. Kondisi “senjakala” (twilight) dapat digunakan untuk menuju meditasi yang lebih dalam, menghasilkan peningkatan kesehatan secara keseluruhan, kebutuhan kurang tidur, meningkatkan kreativitas dan pembelajaran.
Gelombang Delta: Penyembuhan, Tidur Sangat Nyenyak. Kondisi Delta (0.5-4 Hz), saat gelombang otak semakin melambat, sering dihubungkan dengan kondisi tidur yang sangat dalam. Beberapa frekuensi dalam jangkauan Delta ini diiringi dengan pelepasan hormon pertumbuhan manusia (Human Growth Hormone), yang bermanfaat dalam penyembuhan. Kondisi Delta, jika dihasilkan dalam kondisi terjaga, akan menyediakan peluang untuk mengakses aktivitas bawah sadar, mendorong alirannya ke pikiran sadar. Kondisi Delta juga sering dihubungkan dengan manusia-manusia yang memiliki perasaan kuat terhadap empati dan intuisi.
Pandangan keliru yang selama ini ada dalam benak banyak orang adalah otak hanya menghasilkan satu jenis gelombang pada suatu saat. Saat kita aktif berpikir kita berada pada gelombang beta. Kalau kita rileks kita berada di alfa. Kalau sedang melamun, kita di theta. Dan, kalau tidur lelap kita berada di delta. Pandangan itu salah. Hasil penelitian menunjukkan bahwa pada suatu saat, pada umumnya, otak kita menghasilkan empat jenis gelombang  secara bersamaan, namun dengan kadar yang berbeda. Misalnya dalam kondisi tidur, otak kita lebih banyak memproduksi gelombang delta, tapi tetap memproduksi theta, alpha dan beta walaupun kadarnya sedikit.
Setiap orang punya pola gelombang otak yang unik dan selalu konsisten. Keunikan itu tampak pada komposisi jenis gelombang pada saat tertentu. Komposisi gelombang otak itu menentukan tingkat kesadaran seseorang. Meditasi adalah salah satu cara paling kuno untuk mengatur pola gelombang otak. Sedangkan bagi masyarakat modern yang sibuk, teknologi Brainwave Entrainment menjadi salah satu cara favorit untuk mengatur pola gelombang otak agar sesuai dengan kebutuhan.
Sebenarnya, selain 4 jenis gelombang yang kami sebutkan diatas (Delta, Theta, Alpha dan Beta) masih ada gelombang otak yang lebih tinggi yaitu Gamma dengan frekuensi 40-99 Hz, HyperGamma dengan frekuensi tepat 100 Hz dan gelombang Lambda dengan frekuensi tepat 200 Hz. Menurut Dr. Jeffrey. D. Thompson, dari Center for Acoustic Research, gelombang HyperGamma dan Lambda berhubungan dengan kemampuan supranatural, metafisika atau paranormal.
Sedangkan Gelombang Gamma terjadi ketika seseorang mengalami aktifitas mental yang sangat tinggi, misalnya sedang berada di arena pertandingan, perebutan kejuaraan, tampil dimuka umum, sangat panik, ketakutan, terburu-buru karena dikejar deadline pekerjaan atau keadaan lain yang sangat menegangkan bagi orang tersebut.



A.      PROSEDUR KERJA EEG



Gambar 2. Peletakan Elektroda Pencatat



-    Sebelum melakukan prosedur perekaman EEG sebaiknya diketahui Standard Minimal.

-    Perekaman EEG menurut The American EEG Society Guidelines in EEG, yaitu memakai minimal 16 channel yang bekerja secara simultan. Setiap area di otak bisa memberikan pola yang sama atau berbeda pada waktu yang bersamaan, dan menurut pengalaman diperlukan perekaman pada minimal 8 area di otak secara simultan untuk mendapatkan distribusi pola EEG. Perekaman dengan 8 channel secara simultan diperkirakan cukup mencakup permukaan otak untuk menghindari misinterpretasi.
Memakai minimal 17 elektrode pencatat. Semua elektroda ini harus mencakup area frontal, central, parietal, oksipital, temporal, auricular atau mastoid, vorteks dan elektroda ground.
-    Kedua system monopolar (referensial) dan bipolar (diferensial) harus digunakan secara rutin. Setiap system montage mempunyai keunggulan dan kekurangan, sehingga penggunaan kedua system sekaligus adalah esensial untuk mendapatkan informasi yang akurat.
-    Harus ada prosedur buka tutup mata. Aktifitas alfa dapat memberi informasi tentang fungsi abnormal otak. Aktifitas paroksismal dapat pula dicetuskan oleh prosedur ini.
-    Mesin EEG harus dikalibrasi di awal dan di akhir rekaman. Perubahan setting alat selama perekaman harus dicatat.
-    Lama perekaman minimal 15-20 menit pada penderita sadar. Bila ada prosedur stimulasi fotik, hiperventilasi dan tidur maka lama perekaman harus ditambah. EEG adalah sample waktu dari kehidupan seseorang, dan waktu 20 menit adalah waktu yang sangat singkat untuk menarik suatu kesimpulan dari suatu kerja atau suatu fungsi otak seseorang. Oleh karena itu semakin lama perekaman maka semakin besar kemungkinan kita untuk menemukan abnormalitasnya.


A.       Prinsip Kerja dari EEG
Elektroda EEG ukurannya lebih kecil daripada elektroda ECG. Elektroda  EEG dapat diletakkan secara terpisah pada kulit kepala atau dapat dipasang pada  penutup khusus yang dapat diletakkan pada kepala pasien.




Gambar 3. Elektroda EEG

Untuk  meningkatkan kontak  listrik antara elektroda  dan kulit kepala digunakan  elektroda jelly atau pasta. Bahan elektroda yang umumnya digunakan adalah perak klorida. EEG direkam dengan cara membandingkan tegangan antara elektroda aktif pada kulit kepala dengan elektroda referensi pada daun telinga atau bagian lain dari  tubuh. Tipe merekam ini disebut monopolar. Tetapi tipe merekam bipolar lebih  populer dimana tegangan dibandingkan antara dua elektroda pada kulit kepala. Berikut ini diperlihatkan blok diagram dari peralatan EEG.



                                    Gambar  4. Blok Diagram Peralatan EEG

a.        Amplifier
Amplifier digunakan karena EEG harus memiliki penguatan yang tinggi dan karakteristik noise yang rendah sebab amplitudo tegangan EEG sangat rendah. Amplifier yang digunakan harus bebas dari interferensi sinyal dari kabel listrik atau dari peralatan elektronik yang lain. Noise sangat berbahaya di dalam kerja EEG karena gelombang elektroda yang dilekatkan pada kulit kepala hanya beberapa mikrovolt ke amplifier. Amplifier digunakan untuk meningkatkan amplitudo hingga beratus-ratus bahkan beribu-ribu kali dari sinyal yang lemah yang hanya beberapa mikrovolt. Rangkaian dalam sederhana dari amplifier EEG diperlihatkan pada Gambar 3.
b.        Kontrol Sensitivitas
Keseluruhan sensitivitas dari sebuah alat EEG adalah penguatan dari  amplifier dikalikan dengan sensitivitas dari alat penulisan. Jika sensitivitas alat penulisan adalah 1 cm/V, amplifier harus mempunyai keseluruhan penguatan 20.000  untuk 50 μV sinyal untuk memantulkan untuk menghasilkan nilai penguatan diatas.
Langkah-langkahnya adalah kapasitor digabungkan. Sebuah alat EEG mempunyai dua tipe dari kontrol penguatan. Pertama adalah variabel kontinu dan digunakan untuk menyamakan sensitivitas semua channel. Kedua adalah kontrol beroperasi  sejalan dan dimaksudkan untuk meningkatkan atau mengurangi sensitivitas dari suatu  channel oleh sesuatu yang dikenal. Kontrol ini biasanya dikalibrasi dalam desibel.  Penguatan amplifier normalnya diset sehingga sinyalnya sekitar 200 μV dipantulkan  pena diatas daerah linearnya.
c.         Filter
Ketika direkam oleh elektroda, EEG mungkin berisi kerusakan otot dalam  kaitannya dengan kontraksi dari kulit kepala dan otot leher. kerusakannya besar dan tajam sehingga menyebabkan kesulitan besar dalam klinik dan interpretasi otomatis  EEG. Cara paling efektif untuk mengurangi kerusakan otot adalah dengan menyarankan pasien untuk rileks, tapi ini tidak selalu berhasil. Kerusakan ini umumnya dihilangkan menggunakan low pass filter. Filter pada alat EEG mempunyai beberapa pilihan posisi yang biasanya ditandai dengan tetapan waktu.  Suatu nilai satuan tetapan waktu yang diset untuk kontrol frekuensi rendah adalah 0,03; 0,1; 0,3; dan 1,0 detik. Tetapan waktu ini sesuai dengan 3 dB menunjuk pada frekuensi 5,3; 1,6; 0,53; dan 0,16 Hz. Di atas frekuensi cut-off dan dikontrol dengan filter high- frekuensi. Beberapa nilai dapat dipilih, diantaranya adalah 15, 30, 70, dan 300 Hz.
d.        Sistem Penulisan
Sistem penulisan pada EEG umumnya menggunakan sistem ink writing tipe  direct-writing ac recorder yang menyediakan respon frekuensi hingga 60 Hz pada 40 mm puncak ke puncak. Tipe umum dari direct-recorder adalah tipe stylus yang langsung menulis pada kertas yang digerakkan di bawahnya. Pada umumnya di dalamsistem direct-writing recorder, digunakan galvanometer yang mengaktifkan lengan penulis yang disebut pen atau stylus.
Mekanismenya dimodifikasi dari pergerakan D’Arsonval meter. Sebuah kumparan dari kawat tipis berputar pada suatu bingkai aluminium segi-empat dengan ruang udara antara kutub suatu magnet permanen. Poros baja yang dikeraskan dikaitkan dengan bingkai kumparan sedemikian sehingga kumparan berputar dengan friksi minimum. Paling sering, jewel dan poros digantikan oleh taut- band sistem. Suatu pen ringan terikat dengan kumparan. Spring berkait dengan bingkai mengembalikan pen dan kumparan selalu ke suatu titik acuan. Ketika listrik mengalir sepanjang kumparan, suatu medan magnet timbul yang saling berhubungan dengan medan magnet dari  magnet permanen. Hal itu menyebabkan kumparan mengubah sudut posisinya seperti pada suatu motor listrik. Arah perputaran tergantung dari arah aliran arus di dalam kumparan. Besar defleksi dari pen adalah sebanding dengan arus yang mengalir melalui kumparan.
Penulisan stylus dapat mempunyai tinta di ujungnya atau dapat mempunyai suatu ujung yang menjadi kontak dengan suatu sensitif elektro, tekanan yang sensitif atau panas kertas sensitif. Jika suatu penulisan lengan dari panjang yang ditetapkan digunakan, sumbu koordinat akan menjadi kurva. Dalam rangka mengkonversi kurva linier dari ujung penulisan ke dalam kurva gerak lurus, berbagai mekanisme telah dipikirkan untuk mengubah panjang efektif dari  lengan penulisan sehingga bergerak ke tabel perekaman. Instrumen taut-band lebih disukai dibandingkan dengan instrumen poros dan jewel karena lebih menguntungkan untuk meningkatkan sensitivitas listrik, mengeliminasi friksi, lebih baik pengulangannya dan meningkatkan daya tahannya.
e.         Noise
Amplifier EEG dipilih untuk level minimum derau yang dinyatakan dalam kaitan dengan ekuivalen tegangan masuk. Dua mikrovolt sering dinyatakan dapat diterima oleh perekam EEG. Noise berisi komponen dari semua frekuensi dan perekaman noise dapat meningkatkan bandwith dari sistem. Oleh karena itu, penting untuk membatasi bandwith yang dibutuhkan untuk menghasilkan sinyal.

f.         Penggerak Kertas
Hal ini disediakan oleh suatu motor sinkron. Sebuah mekanisme penggerak kertas yang stabil dan akurat perlu dan normal untuk mempunyai beberapa kecepatan kertas yang tersedia untuk dipilih. Kecepatan pada 15, 30, dan 60 mm/s penting. Beberapa mesin juga menyediakan kecepatan di luar daerah ini.
g.        Saluran
EEG direkam secara serempak dari sebuah susunan yang terdiri atas banyak elektroda. Elektroda dihubungkan untuk memisahkan amplifier dan sistem penulisan.  Mesin EEG komersial dapat memiliki sampai 32 saluran, walaupun 8 atau 16 saluran lebih umum.

A.       MEMBENTUK PETA DARI PIKIRAN
Aplikasi yang penting dari EEG multichannel adalah mendapatkan lokasi dari fokus epileptic (titik kecil pada otak dimana aktivitas abnormal berasal dan menyebarkan aktivitas abnormal itu ke bagian lain dari otak) atau tumor, yang tidak  dapat kelihatan dengan X-ray atau CT-scan di kepala.
Gambar 5. EEG Multichannel
Setiap kertas horizontal ditempatkan sesuai dengan pasangan elektroda pada kulit kepala pasien, membentuk kisi-kisi yang tetap seperti pola. Dengan memberi tanda di channel mana gelombang abnormal terjadi  (biasanya ditandai dengan tanda merah), seorang ahli neurologi dapat menduga pada bagian mana dari otak keabnormalan itu berada. Hal ini sangat sulit dilakukan jika jumlah dari channel yang abnormal itu besar atau kemungkinan perubahan itu kompleks. Lokasi bidimensional yang tepat dari fokus epileptic atau tumor sangat tidak mungkin untuk diketahui. Jadi, untuk mengatasi hal tersebut digunakan komputer untuk menganalisa sinyal-sinyal EEG

A.      PEMBACAAN HASIL
Mendapatkan rekaman EEG yang baik dan benar adalah salah satu dari tujuan utama dari pemeriksaan EEG selain interpretasi yang benar. EEG adalah alat untuk menunjang tegaknya diagnosa, selama kita dapat memperoleh rekaman yang baik dan benar. Rekaman yang tidak baik justru akan menyesatkan tegaknya diagnosa. Ada pepatah yang mengatakan “Bad EEG is worse than no EEG at all”.


Gambar 6.  Hasil Pemeriksaan EEG





DAFTAR PUSTAKA

1.      www.elektro-enselografi-eeg.com


2.        Khandpur,R.S.1986.Handbook of BiomedicalInstrumentation.New York:McGraw-Hill.



 

ElektroKardioGraph (EKG)

Assalamualaikum..
Kebetulan nie, kemarin dimata kuliah Elektronika Biomedik saya diberi tugas .. Nah berhubung ada blog jadi saya share ke sini siapa tau dengan tugas saya ini bisa bermanfaat buat para pembaca blog saya.. Isinya membahas seputar EKG (Elektrokardiograph)

A.      PENGERTIAN
Elektrokardiogram (EKG atau ECG) adalah grafik yang merekam perubahan potensial listrik jantung yang dihubungkan dengan waktu. Elektrodiografi adalah ilmu yang mempelajari perubahan-perubahan potensial atau perubahan voltage yang terdapat dalam jantung.
Penggunaan EKG dipelopori oleh Einthoven pada tahun 1903 dengan menggunakan Galvanometer. Galvanometer senar ini adalah suatu instrumen yang sangat peka sekali yang dapat mencatat perbedaan kecil dari tegangan (milivolt) pada jantung.
Beberapa tujuan dari penggunaan EKG adalah :
1. Untuk mengetahui adanya kelainan-kelainan irama jantung/disritmia
2. Kelainan-kelainan otot jantung
3. Pengaruh/efek obat-obat jantung
4. Ganguan -gangguan elektrolit
5. Perikarditis
6. Memperkirakan adanya pembesaran jantung/hipertropi atrium dan ventrikel
7. Menilai fungsi pacu jantung.

B.       BENTUK GELOMBANG DAN INTERVAL EKG
Pada EKG terlihat bentuk gelombang khas yang disebut P, QRS, dan T, sesuai dengan penyebaran eksitasi listrik dan pemulihannya melalui sistem hantaran dan miokardium. Gelombang – gelombang ini direkam pada kertas grafik dengan skala waktu horizontal dan voltase vertikal. 



                                                                     Gambar 1.  Bentuk Gelombang EKG

Makna bentuk gelombang dan interval pada EKG adalah sebagai berikut :
1. Gelombang P
Sesuai dengan depolarisasi atrium. Rangsangan normal untuk depolarisasi atrium berasal dari nodus sinus. Namun, besarnya arus listrik yang berhubungan dengan eksitasi nodus sinus terlalu kecil untuk dapat terlihat pada EKG. Gelompang P dalam keadaan normal berbentuk melengkung dan arahnya ke atas pada kebanyakan hantaran.
Pembesaran atrium dapat meningkatkan amplitudo atau lebar gelombang P, serta mengubah bentuk gelombang P. Disritmia jantung juga dapat mengubah konfigurasi gelombang P. misalnya, irama yang berasal dari dekat perbatasan AV dapat menimbulkan inversi gelombang P, karena arah depolarisasi atrium terbalik.

2. Interval PR
Diukur dari permulaan gelombang P hingga awal kompleks QRS. Dalam interval ini tercakup juga penghantaran impuls melalui atrium dan hambatan impuls melalui nodus AV. Interval normal adalah 0,12 sampai 0,20 detik.

3. Kompleks QRS
Menggambarkan depolarisasi ventrikel. Amplitudo gelombang ini besar karena banyak massa otot yang harus dilalui oleh impuls listrik. Namun, impuls menyebar cukup cepat, normalnya lamanya komplek QRS adalah antara 0,06 dan 0,10 detikHipertrofi ventrikel akan meningkatkan amplitudo kompleks QRS karena penambahan massa otot jantung. Repolasisasi atrium terjadi selama massa depolarisasi ventrikel. Tetapi besarnya kompleks QRS tersebut akan menutupi gambaran pemulihan atrium yang tercatat pada elektrokardiografi.



                                                                           Gambar 2. Variasi Kompleks QRS


4. Segmen ST
Interval ini terletak antara gelombang depolarisasi ventrikel dan repolarisasi ventrikel. Tahap awal repolarisasi ventrikel terjadi selama periode ini, tetapi perubahan ini terlalu lemah dan tidak tertangkap pada EKG. Penurunan abnormal segmen ST dikaitkan dengan iskemia miokardium sedangkan peningkatan segmen ST dikaitkan dengan infark. Penggunaan digitalis akan menurunkan segmen ST.

5. Gelombang T
Repolarisasi ventrikel akan menghasilkan gelombang T. Dalam keadaan normal gelombang T ini agak asimetris, melengkung dan ke atas pada kebanyakan sadapan. Inversi gelombang T berkaitan dengan iskemia miokardium. Hiperkalemia (peningkatan kadar kalium serum) akan mempertinggi dan mempertajam puncak gelombang T.

6. Interval QT
Interval ini diukur dari awal kompleks QRS sampai akhir gelombang T, meliputi depolarisasi dan repolarisasi ventrikel. Interval QT rata – rata adalah 0,36 sampai 0, 44 cdetik dan bervariasi sesuai dengan frekuensi jantung.
Interval QT memanjang pada pemberian obat – obat antidisritmia seperti kuinidin, prokainamid, sotalol (betapace) dan amiodaron (cordarone).
Pada umumnya dirancang tiga kategori sadapan :
1.      Sadapan standar anggota tubuh (sadapan I, II, dan III)
Sadapan ini mengukur opotensial listrik antara dua titik, sehingga sadapan ini bersifat bipolar, dengan satu kutub negatif dan satu kutub positif. Elektroda ditempatkan pada lengan kanan, lengan kiri, dan tungkai kiri. Sadapan I melihat jantung dari sumbu yang menghubungkan lengan kanan dan lengan kiri, dengan lengan kiri sebagai kutub positif. Sadapan II dari lengan kanan dan tungkai kiri, dengan tungkai kiri positif. Sedangkan, sadapan III dari lengan kiri dan tungkai kiri dengan tungkai kiri positif.
2.       Sadapan anggota badan yang diperkuat (aVR, aVL, aVF)
Hantaran ini disesuaikan secara elektris untuk mengukur potensial listrik absolut pada satu tempat pencatatan, yaitu dari elektroda positif yang ditempatkan pada ekstremitas dengan demikian merupakan suatu sadapan unipolar. Keadaan ini dicapai dengan menghilangkan efek kutub negatif secara elektris dan membentuk suatu elektroda “indiferen” pada potensial nol.
EKG secara otomatis akan mengadakan penyesuaian untuk menghubungkan elsktroda anggota badan lainnya sehingga membentuk suatu elektroda indiferen yang pada hekekatnya tidak akan mempengaruhi elektroda positif. Voltase yang tercatat pada elektroda positif lalu diperkuat atau diperbesar untuk menghasilkan sadapan ekstremitas unipolar. Terdapat tiga sadapan anggota tubuh yang diperbesar, aVR mencatat lengan kanan, aVL mencatat lengan kiri, dan aVF memcatat tungkai kiri (lokasi aVF dapat dengan mudah diingat dengan lokasi huruf F dengan kata foot (kaki)).
3.        Sadapan prekordial atau dada (V1 hinggan V6)
Merupakan sadapan unipolar yang mencatatpotensial listrik absolut pada dinding dada anterior atau prekordium. Identifikasi petunjuk – petunjuk berikut mempermudah meletakkan prekordial dengan tepat :
-      Sudut Louis yaitu tonjolan tulang dada pada sambungan antara manubrium dan korpussterni.
-      Ruang sela iga kedua, berdekatan dengan sudut Louise.
-      Linea midklavikularis kiri
-      Linea aksilaris anterior dan midaksilaris
Elektroda di pasang berurutan pasa enam tempat berbeda pada dinding dada :
V1 : pada sela iga keempat sebelah kanan dari sternum
V2 : pada sela iga keempat sebelah kiri dari sternum
V3 : pada pertengan antara V2 dan V4
V4 : pada sela iga kelima di garis mid-klavikularis
V5 : horisontal terhadap V4, pada garis aksilaris anterior
V6 : horisontal terhadap V5, pada garis mid aksilaris.

Sadapan standar anggota badan dan sadapan anggota badan yang diperkuat melihat jantung dari bidang frontal. Perspektif relatif dari setiap sadapan paling mudah dikonsepkan dengan menggunakan suatu diagram skematik yang disebut sistem acuam enam sumbu. Sistem acuan ini diperoleh dengan cara sebagai berikut :
1.  Hubungkan sumbu dari I, II, dan III sehingga membentuk segitiga sama sisi yang disebut segitiga einthoven. Jantungnya dianggap sebagai pusat listrik segitiga tersebut.
2.   Tempatkan sumbu sadapan sedemikian rupa sehingga masing – masing memancar dari pusat segitiga dan membetuk diagram kedua yang dikenal dengan sistem acuan tiga sumbu.
3.    Gabungkan diagram sistem acuan tiga sumbu dengan represenatsi skematik dari sadapan anggota badan yang diperkuat, yang emmancar dari pusat listrik dari toraks, dan menghasilkan sistem acuan enam sumbu.
Sistem acuan enam sumbu merupakan atal bantu yang sangat berharga dalam menginterpretsi hasil EKG, memungkinkan perhitungan arah rata – rata aktivitas listrik dalam jantung. Arah rata – rata aktivitas listrik yang dihitung dari EKG dikenal sebagai sumbu listrik jantung.



C.      CARA MENEMPATKAN ELEKTRODE
   


                                                                                           Gambar 3. Peletakan elektroda pada tubuh

1. Elektrode extremitas atas dipasang pada pergelangan tangan kanan dan kiri searah dengan telapak tangan.
2. Pada extremitas bawah pada pergelangan kaki kanan dan kiri sebelah dalam.
Posisi pada pengelangan bukanlah mutlak, bila diperlukan dapatlah dipasang sampai ke bahu kiri dan kanan dan pangkal paha kiri dan kanan.
Kemudian kabel-kabel dihubungkan :
Merah (RA / R) lengan kananØ
Kuning (LA/ L) lengan kiriØ
Hijau (LF / F ) tungkai kiriØ
Hitam (RF / N) tungkai kanan (sebagai ground)Ø
Hasil pemasangan tersebut terjadilah 2 sandapan (lead):
1.      Sandapan bipolar (sandapan standar) dan ditandai dengan angka romawi I, II, III.
2.      Sandapan Unipolar Extremitas (Augmented axtremity lead) yang ditandai dengan            simbol aVR, aVL, aVF.
3. Pemasangan elektroda dada (Sandapan Unipolar Prekordial), ini ditandai dengan huruf V   dan disertai        angka di belakangnya yang menunjukkan lokasi diatas prekordium, harus dipasang pada :
VI : sela iga ke 4 garis sternal kanan
V2 : sela iga ke 4 pada garis sternal kiri
V3 : terletak diantara V2 dan V4
V4 : ruang sela iga ke 5 pada mid klavikula kiri
V5 : garis aksilla depan sejajar dengan V4
V6 : garis aksila tengah sejajar dengan V4

Sandapan tambahan :
V7 : garis aksila belakang sejajar dengan V4
V8 : garis skapula belakang sejajar dengan V4
V9 : batas kin dan kolumna vetebra sejajar dengan V4
V3R - V9R posisinya sama dengan V3 - V9, tetapi pada sebelah kanan.

Jadi pada umumnya pada sebuah EKG dibuat 12 sandapan (lead) yaitu :
I , II, III, aVR, aVL, aVF, VI, V2, V3, V4, V5, V6. Sandapan yang lain dibuat bila perlu.

Lokasi permukaan otot jantung dapat dilihat pada EKG, seperti :
1. Anterior : V2, V3, V4
2. Septal : aVR, V1, V2
3. Lateral : I, aVL, V5, V6
4. Inferior : II, III, aVF

Aksis terletak antara : - 30 sampai + 110 (deviasi aksis normal)
Lebih dari – 30 : LAD (deviasi aksis kiri)
Lebih dari dari + 110 : RAD (deviasi aksis kanan)

D.    CARA MEMBACA EKG
Ukuran-Ukuran pada kertas EKG Pada perekaman EKG standar telah ditetapkan yaitu :
1.   Kecepatan rekaman 25 mm/detik (25 kotak kecil.
2.   Kekuatan voltage 10 mm = 1 millivolt (10 kotak kecil)

Jadi ini berarti ukuran dikertas EKG adalah :
Pada garis horisontal
1.      • Tiap satu kotak kecil = 1 mm = 1/25 detik = 0,04 detik
2.      • Tiap satu kotak sedang = 5 mm = 5/25 detik = 0,20 detik
3.      • Tiap satu kotak besar = 25 mm = 25125” = I ,00 detik

Pada garis vertikal
1.      • 1 kotak kecil = 1 mm =0.1 mv
2.      • 1 kotak sedang = 5 mm = 0,5 mv
3.      • 2 kotak sedang = 10 mm= I milivolt





                                                                             Gambar 4. Cara Baca Kertas EKG

E.      CARA MENGHITUNG EKG
Kecepatan EKG adalah 25 mm / detik.
Satu menit = 60 detik, maka kecepatan EKG dalam 1 menit yaitu 60 x 25 = 1500 mm.
Satu kotak kecil panjangnya = 1mm.
Satu kotak sedang (5 kotak kecil) : 1500 / 5 = 300 mm
                                   
Gambar 5. Kertas EKG


F.       NILAI-NILAI EKG NORMAL
1.  Gelombang P yaitu depolarisasi atrium.
a. Nilai-normal ; lebar <>
b. tinggi <0,25>
c. bentuk (+ ) di lead I, II, aVF, V2 - V6
d. (-) di lead aVR
e. + atau - atau + bifasik ( ) di lead III, aVL, V1

     2. Kompleks QRS yaitu depolarisasi dan ventrikel, diukur dari permulaan gelombang QRS   sampai akhir gelombang QRS Lebar 0,04 - 0,10 detik.
     a. Gelombang Q yaitu defleksi pertama yang ke bawah (-) lebar 0,03 detik, dalam   <1/3>
b. Gelombang R yaitu defleksi pertama yang keatas (+)
• Tinggi ; tergantung lead.
• Pada lead I, II, aVF, V5 dan V6 gel. R lebih tinggi (besar)
• Gel. r kecil di V1 dan semakin tinggi (besar) di V2 - V6.
 c. Gel. S lebih besar pada VI - V3 dan semakin kecil di V4 - V6.

3. Gelombang T yaitu repolarisasi dan ventrikel
     a. (+) di lead I, II, aVF, V2 - V6.
     b. (-) di lead aVR.
     c. (±) / bifasik di lead III, aVL, V1 (dominan (+) / positif)


4. Gelombang U ; biasanya terjadi setelah gel. T (asal usulnya tidak diketahui) dan dalam keadaan normal  tidak terlihat.



    DAFTAR PUSTAKA:
1. Gibson, Jhon. 2002. Fisiologi dan Anatomi Modern untuk Perawat edisi 2. EGC: Jakarta.
2. Harrison.2000.Prinsip-prinsip Ilmu Penyakit Dalam Edisi 13.EGC:Jakarta.
3. Sherwood,Lauralee.2001.Fisiologi Manusia Edisi 2 ;dari Sel ke Sistem.EGC:Jakarta.
4. Thaler,Malcom S.2000.Satu-satunya buku EKG yang Anda Perlukan Edisi 2; Alih Bahasa Samik Wahab.Hipokrates:Jakarta.
 

NOTE:
1.  Terima kasih karena sudah sudi mampir keblog saya yang sederhana ini..
2. Untuk tugas tugas selanjutnya mengenai Elektronika Biomedik akan menyusul... :) hihiiiiihiiiiii